A Framework for Statistical Inference via Randomized Algorithms

Abstract

Randomized algorithms, such as randomized sketching or projections, are a promising approach to ease the computational burden in analyzing large datasets. However, randomized algorithms also produce non-deterministic outputs, leading to the problem of evaluating their accuracy. In this paper, we develop a statistical inference framework for quantifying the uncertainty of the outputs of randomized algorithms. We develop appropriate statistical methods -- sub-randomization, multi-run plug-in and multi-run aggregation inference -- by using multiple runs of the same randomized algorithm, or by estimating the unknown parameters of the limiting distribution. As an example, we develop methods for statistical inference for least squares parameters via random sketching using matrices with i.i.d.entries, or uniform partial orthogonal matrices. For this, we characterize the limiting distribution of estimators obtained via sketch-and-solve as well as partial sketching methods. The analysis of i.i.d. sketches uses a trigonometric interpolation argument to establish a differential equation for the limiting expected characteristic function and find the dependence on the kurtosis of the entries of the sketching matrix. The results are supported via a broad range of simulations

    Similar works

    Full text

    thumbnail-image

    Available Versions