A note on maximal operators for the Schr\"{o}dinger equation on T1.\mathbb{T}^1.

Abstract

Motivated by the study of the maximal operator for the Schr\"{o}dinger equation on the one-dimensional torus T1 \mathbb{T}^1 , it is conjectured that for any complex sequence {bn}n=1N \{b_n\}_{n=1}^N , βˆ₯sup⁑t∈[0,N2]βˆ£βˆ‘n=1Nbne(xnN+tn2N2)∣βˆ₯L4([0,N])≀CΟ΅NΟ΅N12βˆ₯bnβˆ₯β„“2 \left\| \sup_{t\in [0,N^2]} \left|\sum_{n=1}^N b_n e \left(x\frac{n}{N} + t\frac{n^2}{N^2} \right) \right| \right\|_{L^4([0,N])} \leq C_\epsilon N^{\epsilon} N^{\frac{1}{2}} \|b_n\|_{\ell^2} In this note, we show that if we replace the sequence {n2N2}n=1N \{\frac{n^2}{N^2}\}_{n=1}^N by an arbitrary sequence {an}n=1N \{a_n\}_{n=1}^N with only some convex properties, then βˆ₯sup⁑t∈[0,N2]βˆ£βˆ‘n=1Nbne(xnN+tan)∣βˆ₯L4([0,N])≀CΟ΅NΟ΅N712βˆ₯bnβˆ₯β„“2. \left\| \sup_{t\in [0,N^2]} \left|\sum_{n=1}^N b_n e \left(x\frac{n}{N} + ta_n \right) \right| \right\|_{L^4([0,N])} \leq C_\epsilon N^\epsilon N^{\frac{7}{12}} \|b_n\|_{\ell^2}. We further show that this bound is sharp up to a CΟ΅NΟ΅C_\epsilon N^\epsilon factor.Comment: 13 page

    Similar works

    Full text

    thumbnail-image

    Available Versions