Choosing the Right Approach at the Right Time: A Comparative Analysis of Casual Effect Estimation using Confounder Adjustment and Instrumental Variables

Abstract

In observational studies, unobserved confounding is a major barrier in isolating the average causal effect (ACE). In these scenarios, two main approaches are often used: confounder adjustment for causality (CAC) and instrumental variable analysis for causation (IVAC). Nevertheless, both are subject to untestable assumptions and, therefore, it may be unclear which assumption violation scenarios one method is superior in terms of mitigating inconsistency for the ACE. Although general guidelines exist, direct theoretical comparisons of the trade-offs between CAC and the IVAC assumptions are limited. Using ordinary least squares (OLS) for CAC and two-stage least squares (2SLS) for IVAC, we analytically compare the relative inconsistency for the ACE of each approach under a variety of assumption violation scenarios and discuss rules of thumb for practice. Additionally, a sensitivity framework is proposed to guide analysts in determining which approach may result in less inconsistency for estimating the ACE with a given dataset. We demonstrate our findings both through simulation and an application examining whether maternal stress during pregnancy affects a neonate's birthweight. The implications of our findings for causal inference practice are discussed, providing guidance for analysts for judging whether CAC or IVAC may be more appropriate for a given situation

    Similar works

    Full text

    thumbnail-image

    Available Versions