Large-scale online recommender system spreads all over the Internet being in
charge of two basic tasks: Click-Through Rate (CTR) and Post-Click Conversion
Rate (CVR) estimations. However, traditional CVR estimators suffer from
well-known Sample Selection Bias and Data Sparsity issues. Entire space models
were proposed to address the two issues via tracing the decision-making path of
"exposure_click_purchase". Further, some researchers observed that there are
purchase-related behaviors between click and purchase, which can better draw
the user's decision-making intention and improve the recommendation
performance. Thus, the decision-making path has been extended to
"exposure_click_in-shop action_purchase" and can be modeled with conditional
probability approach. Nevertheless, we observe that the chain rule of
conditional probability does not always hold. We report Probability Space
Confusion (PSC) issue and give a derivation of difference between ground-truth
and estimation mathematically. We propose a novel Entire Space Multi-Task Model
for Post-Click Conversion Rate via Parameter Constraint (ESMC) and two
alternatives: Entire Space Multi-Task Model with Siamese Network (ESMS) and
Entire Space Multi-Task Model in Global Domain (ESMG) to address the PSC issue.
Specifically, we handle "exposure_click_in-shop action" and "in-shop
action_purchase" separately in the light of characteristics of in-shop action.
The first path is still treated with conditional probability while the second
one is treated with parameter constraint strategy. Experiments on both offline
and online environments in a large-scale recommendation system illustrate the
superiority of our proposed methods over state-of-the-art models. The
real-world datasets will be released