Optimal two-dimensional roughness for transition delay in high-speed boundary layer

Abstract

The influence of surface roughness on transition to turbulence in a Mach 4.5 boundary layer is studied using direct numerical simulations. Transition is initiated by the nonlinearly most dangerous inflow disturbance, which causes the earliest possible breakdown on a flat plate for the prescribed inflow energy and Mach number. This disturbance is primarily comprised of two normal second-mode instability waves and an oblique first mode. When localized roughness is introduced, its shape and location relative to the synchronization points of the inflow waves are confirmed to have a clear impact on the amplification of the second-mode instabilities. The change in modal amplification coincides with the change in the height of the near-wall region where the instability wave-speed is supersonic relative to the mean flow; the net effect of a protruding roughness is destabilizing when placed upstream of the synchronization point and stabilizing when placed downstream. Assessment of the effect of the roughness location is followed by an optimization of the roughness height, abruptness and width with the objective of achieving maximum transition delay. The optimization is performed using an ensemble-variational (EnVar) approach, while the location of the roughness is fixed upstream of the synchronization points of the two second-mode waves. The optimal roughness disrupts the phase of the near-wall pressure waves, suppresses the amplification of the primary instability waves, and mitigates the nonlinear interactions that lead to breakdown to turbulence. The outcome is a sustained non-turbulent flow throughout the computational domain

    Similar works

    Full text

    thumbnail-image

    Available Versions