Brezis--Seeger--Van Schaftingen--Yung-Type Characterization of Homogeneous Ball Banach Sobolev Spaces and Its Applications

Abstract

Let γ∈Rβˆ–{0}\gamma\in\mathbb{R}\setminus\{0\} and X(Rn)X(\mathbb{R}^n) be a ball Banach function space satisfying some mild assumptions. Assume that Ξ©=Rn\Omega=\mathbb{R}^n or Ξ©βŠ‚Rn\Omega\subset\mathbb{R}^n is an (Ξ΅,∞)(\varepsilon,\infty)-domain for some Ρ∈(0,1]\varepsilon\in(0,1]. In this article, the authors prove that a function ff belongs to the homogeneous ball Banach Sobolev space WΛ™1,X(Ξ©)\dot{W}^{1,X}(\Omega) if and only if f∈Lloc1(Ξ©)f\in L_{\mathrm{loc}}^1(\Omega) and sup⁑λ∈(0,∞)Ξ»βˆ₯[∫{y∈Ω: ∣f(β‹…)βˆ’f(y)∣>Ξ»βˆ£β‹…βˆ’y∣1+Ξ³p}βˆ£β‹…βˆ’yβˆ£Ξ³βˆ’n dy]1pβˆ₯X(Ξ©)<∞, \sup_{\lambda\in(0,\infty)}\lambda \left\|\left[\int_{\{y\in\Omega:\ |f(\cdot)-f(y)|>\lambda|\cdot-y|^{1+\frac{\gamma}{p}}\}} \left|\cdot-y\right|^{\gamma-n}\,dy \right]^\frac{1}{p}\right\|_{X(\Omega)}<\infty, where p∈[1,∞)p\in[1,\infty) is related to X(Rn)X(\mathbb{R}^n). This result is of wide generality and can be applied to various specific Sobolev-type function spaces, including Morrey, Bourgain--Morrey-type, weighted (or mixed-norm or variable) Lebesgue, local (or global) generalized Herz, Lorentz, and Orlicz (or Orlicz-slice) Sobolev spaces, which is new even in all these special cases; in particular, it is still new even when X(Ξ©):=Lq(Rn)X(\Omega):=L^q(\mathbb{R}^n) with 1≀p<q<∞1\leq p<q<\infty. The novelty of this article exists in that, to establish the characterization of WΛ™1,X(Ξ©)\dot{W}^{1,X}(\Omega), the authors provide a machinery via using a generalized Brezis--Seeger--Van Schaftingen--Yung formula on X(Rn)X(\mathbb{R}^n), an extension theorem on WΛ™1,X(Ξ©)\dot{W}^{1,X}(\Omega), a Bourgain--Brezis--Mironescu-type characterization of the inhomogeneous ball Banach Sobolev space W1,X(Ξ©)W^{1,X}(\Omega), and a method of extrapolation to overcome those difficulties caused by that X(Rn)X(\mathbb{R}^n) might be neither the rotation invariance nor the translation invariance and that the norm of X(Rn)X(\mathbb{R}^n) has no explicit expression.Comment: arXiv admin note: text overlap with arXiv:2304.0094

    Similar works

    Full text

    thumbnail-image

    Available Versions