Applying SDN to Mobile Networks: A New Perspective for 6G Architecture

Abstract

The upcoming Sixth Generation (6G) mobile communications system envisions supporting a variety of use cases with differing characteristics, e.g., very low to extremely high data rates, diverse latency needs, ultra massive connectivity, sustainable communications, ultra-wide coverage etc. To accommodate these diverse use cases, the 6G system architecture needs to be scalable, modular, and flexible; both in its user plane and the control plane. In this paper, we identify some limitations of the existing Fifth Generation System (5GS) architecture, especially that of its control plane. Further, we propose a novel architecture for the 6G System (6GS) employing Software Defined Networking (SDN) technology to address these limitations of the control plane. The control plane in existing 5GS supports two different categories of functionalities handling end user signalling (e.g., user registration, authentication) and control of user plane functions. We propose to move the end-user signalling functionality out of the mobile network control plane and treat it as user service, i.e., as payload or data. This proposal results in an evolved service-driven architecture for mobile networks bringing increased simplicity, modularity, scalability, flexibility and security to its control plane. The proposed architecture can also support service specific signalling support, if needed, making it better suited for diverse 6GS use cases. To demonstrate the advantages of the proposed architecture, we also compare its performance with the 5GS using a process algebra-based simulation tool.Comment: 11 page

    Similar works

    Full text

    thumbnail-image

    Available Versions