Kernelization for Finding Lineal Topologies (Depth-First Spanning Trees) with Many or Few Leaves

Abstract

For a given graph GG, a depth-first search (DFS) tree TT of GG is an rr-rooted spanning tree such that every edge of GG is either an edge of TT or is between a \textit{descendant} and an \textit{ancestor} in TT. A graph GG together with a DFS tree is called a \textit{lineal topology} T=(G,r,T)\mathcal{T} = (G, r, T). Sam et al. (2023) initiated study of the parameterized complexity of the \textsc{Min-LLT} and \textsc{Max-LLT} problems which ask, given a graph GG and an integer kβ‰₯0k\geq 0, whether GG has a DFS tree with at most kk and at least kk leaves, respectively. Particularly, they showed that for the dual parameterization, where the tasks are to find DFS trees with at least nβˆ’kn-k and at most nβˆ’kn-k leaves, respectively, these problems are fixed-parameter tractable when parameterized by kk. However, the proofs were based on Courcelle's theorem, thereby making the running times a tower of exponentials. We prove that both problems admit polynomial kernels with \Oh(k^3) vertices. In particular, this implies FPT algorithms running in k^{\Oh(k)}\cdot n^{O(1)} time. We achieve these results by making use of a \Oh(k)-sized vertex cover structure associated with each problem. This also allows us to demonstrate polynomial kernels for \textsc{Min-LLT} and \textsc{Max-LLT} for the structural parameterization by the vertex cover number.Comment: 16 pages, accepted for presentation at FCT 202

    Similar works

    Full text

    thumbnail-image

    Available Versions