Insights on the Martian water cycle through the SPICAM/MEx retrievals of the H<sub>2</sub>O vertical distribution

Abstract

International audienceIn pre-Mars Express era only very sparse measurements of the vertical profile of water vapor existed, with limited temporal and spatial coverage. Thus, knowledge of the H2 O distribution along the atmosphere relied almost exclusively on General Circulation Models. The vertical distribution of water vapor nonetheless allows to get otherwise unobtainable information on important characteristics of the Martian water cycle, such as the role of sources and sinks, phase changes, and the influence of clouds. Several other potentially significant phenomena, as the presence of supersaturation, the deposition of water vapor in the layer just below the saturation height, the formation of ice particles and water ice clouds, can be observed and studied in detail for the first time. The infrared channel of the SPICAM spectrometer onboard Mars Express, used in solar oc-cultation mode, allows to retrieve simultaneously the vertical profile of H2 O, CO2 , and aerosol properties. This dataset is thus perfectly suited to enhance our vertical knowledge of the at-mosphere of Mars, covering more than three full Martian years with good temporal and spatial distribution. We present the main results from the analysis of water vapor profiles, and their implication for the behavior of the water cycle on Mars. A comparison with the output from the state-of-the-art General Circulation Model developed at the Laboratoire de Météorologie Dynamique ee in Paris (LMD-GCM), is performed, in order to understand the consequences of this dataset on the current knowledge of physics and microphysics of water on Martian atmosphere. In particular, the currently accepted assumption that the distribution of water in the atmosphere is controlled by saturation physics is tested, and the consequences of the departure from this assumption are analysed in detail

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 22/07/2023