Asymptotic Performance of Vector Quantizers with a Perceptual Distortion Measure

Abstract

Gersho's bounds on the asymptotic performance of vector quantizers are valid for vector distortions which are powers of the Euclidean norm. Yamada, Tazaki and Gray generalized the results to distortion measures that are increasing functions of the norm of their argument. In both cases, the distortion is uniquely determined by the vector quantization error, i.e., the Euclidean difference between the original vector and the codeword into which it is quantized. We generalize these asymptotic bounds to input-weighted quadratic distortion measures, a class of distortion measure often used for perceptually meaningful distortion. The generalization involves a more rigorous derivation of a fixed rate result of Gardner and Rao and a new result for variable rate codes. We also consider the problem of source mismatch, where the quantizer is designed using a probability density different from the true source density. The resulting asymptotic performance in terms of distortion increase in dB is shown..

    Similar works

    Full text

    thumbnail-image

    Available Versions