Robustness of Baryon Acoustic Oscillations Measurements with Photometric Redshift Uncertainties

Abstract

We investigate the robustness of baryon acoustic oscillations (BAO) measurements with a photometric galaxy sample using mock galaxy catalogs with various sizes of photometric redshift (photo-zz) uncertainties. We first investigate the robustness of BAO measurements, assuming we have a perfect knowledge of photo-zz uncertainties. We find that the BAO shift parameter α\alpha can be constrained in an unbiased manner for various sizes of photometric redshift uncertainties at z=0.251z=0.251, 0.6170.617, and 1.031.03 as long as the number density of galaxies is high. A sparse galaxy sample causes additional noise in the covariance matrix calculation and it can bias the constraint on α\alpha. Next, we investigate the scenario where incorrect photometric redshift uncertainties are assumed in the fitting model and find that underestimating the photo-zz uncertainty leads to a degradation in the constraining power on α\alpha. In addition, we investigate BAO measurements with a cross-correlation signal between a spec-zz sample and a photo-zz sample. We find BAO constraints are unbiased and slightly tighter than the auto-correlation signal of a photo-zz sample. We also quantify the constraining power on Ωm0\Omega_{\rm m0} assuming the LSST-like covariance and find that the 95\% confidence level is σ(Ωm0)∼0.03\sigma(\Omega_{\rm m0})\sim0.03-0.050.05 corresponding to the photo-zz uncertainties of 1\% to 3\% respectively. Finally, we examine whether the skewness in the photometric redshift can bias the constraint on α\alpha and confirm that the constraint on α\alpha is unbiased even if we use a fitting model assuming a Gaussian photo-zz uncertainty.Comment: 10 pages, 11 figures, 3 table

    Similar works

    Full text

    thumbnail-image

    Available Versions