Collaborative Control Method for Offshore Wind Farms with Friendly Access to Hydrogen Energy Systems During Typhoons

Abstract

[Introduction] With the steady progress of the carbon peaking and carbon neutrality goals, more and more distributed renewable energy is connected to the power grid. Among them, in economically developed coastal areas with heavy power load, vigorously developing offshore wind power has become a hot point of wide concern for scholars at home and abroad. However, the inherent intermittency of wind power generation, especially when the offshore wind farm is actively disconnected from the main grid during typhoons, can adversely affect the receiving-end grid. [Method] In order to realize the friendly access of offshore wind power during typhoon, considering the advantages of hydrogen energy storage such as high storage efficiency, low emission and wide application, this paper proposed a collaborative control method between offshore wind farm and hydrogen management system (HMS). On the one hand, during the period of typhoon approaching, this method could maximize the use of wind energy for power generation under normal operation. On the other hand, when the typhoon passed through and the offshore wind farm was gradually disconnected from the grid, the hydrogen energy system released electric energy to alleviate the active power drop of the wind farm and solve the problems such as the ramp rate in the operation of the traditional wind turbine generator systems, so as to reduce its adverse impact on the receiving-end grid and effectively smooth the volatility of the offshore wind power output. This paper firstly introduced the physical modeling method and control model of offshore wind farm and hydrogen energy system in detail, and explained the collaborative control strategy between them according to the typhoon period. [Result] Finally, simulation results show that the proposed method enables the offshore wind farms to be more flexible and friendly to meet the grid-connected operation during typhoons. In addition, the hydrogen energy storage system can maximize the use of wind energy for power generation under normal operation. [Conclusion] Control the hydrogen energy system to release electric energy during typhoons can solve the problems such as the ramp rate of the traditional wind turbine generator systems, so as to reduce its adverse impact on the receiving-end grid

    Similar works