Topological Unwinding in an Exciton-Polariton Condensate Array

Abstract

The phase distribution in a Bose-Einstein condensate can realize various topological states which can be classified according to distinct winding numbers. While states with different winding numbers are topologically protected in the linear Schr\"odinger equation, when nonlinearities are introduced, violations of the topological protection can occur, leading to unwinding. Exciton-polariton condensates constitute a weakly nonlinear open dissipative system that is well suited to studying such physics. Here we show that exciton-polariton condensates display a spontaneous phase unwinding from a π\pi- to zero-state. While such an effect was previously observed in a one-dimensional polariton-condensate array and explained as occurring due to single-particle mode competition, we offer a new explanation in terms of collective phase unwinding of metastable states. We clarify that the collective transition is caused by the combined effect of nonlinearity and topological defects in the condensates. Reanalyzing the experimental data, we find an evidence of the collective phase unwinding.Comment: 8+4 pages, 4+1 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions