Energization of charged test particles in magnetohydrodynamic fields: waves vs turbulence picture

Abstract

Direct numerical simulations of 3D compressible MHD turbulence were performed in order to study the relation between waves modes and coherent structures and the consequent energization of test particles. Moreover, the question of which is the main mechanism of this particle energization is rigorously discussed. In particular, using the same initial conditions, we analyzed the non-linear and linear evolution of a turbulent state along with the case of randomized phases. Then, the behavior of the linear and non-linear simulations were compared through the study of time evolution of particle kinetic energy and preferential concentration. Also, spatio temporal spectra were used to identify the presence of wave modes and quantify the fraction of energy around the MHD modes in linear and non-linear simulations. Finally, the variation of the correlation time of the external forcing is studied in detail along with the effect on the particle energization (and clustering) and the presence of wave modes. More specifically, particle energization tends to decrease when the fraction of linear energy increase, supporting the idea that energization by structures is the dominant mechanism for particle energization instead of resonating with wave modes as suggested by Fermi energization theory

    Similar works

    Full text

    thumbnail-image

    Available Versions