Approximation in Databases

Abstract

One source of partial information in databases is the need to combine information from several databases. Even if each database is complete for some world , the combined databases will not be, and answers to queries against such combined databases can only be approximated. In this paper we describe various situations in which a precise answer cannot be obtained for a query asked against multiple databases. Based on an analysis of these situations, we propose a classification of constructs that can be used to model approximations. One of the main goals is to show that most of these models of approximations possess universality properties. The main motivation for doing this is applying the data-oriented approach, which turns universality properties into syntax, to obtain languages for approximations. We show that the languages arising from the universality properties have a number of limitations. In an attempt to overcome those limitations, we explain how all the languages can be embedded into a language for conjunctive and disjunctive sets from [21], and demonstrate its usefulness in querying independent databases

    Similar works