The largest crossing number of tanglegrams

Abstract

A tanglegram T\cal T consists of two rooted binary trees with the same number of leaves, and a perfect matching between the two leaf sets. In a layout, the tanglegrams is drawn with the leaves on two parallel lines, the trees on either side of the strip created by these lines are drawn as plane trees, and the perfect matching is drawn in straight line segments inside the strip. The tanglegram crossing number cr(T){\rm cr}({\cal T}) of T\cal T is the smallest number of crossings of pairs of matching edges, over all possible layouts of T\cal T. The size of the tanglegram is the number of matching edges, say nn. An earlier paper showed that the maximum of the tanglegram crossing number of size nn tanglegrams is <12(n2)<\frac{1}{2}\binom{n}{2}; but is at least 12(n2)n3/2n2\frac{1}{2}\binom{n}{2}-\frac{n^{3/2}-n}{2} for infinitely many nn. Now we make better bounds: the maximum crossing number of a size nn tanglegram is at most 12(n2)n4 \frac{1}{2}\binom{n}{2}-\frac{n}{4}, but for infinitely many nn, at least 12(n2)nlog2n4\frac{1}{2}\binom{n}{2}-\frac{n\log_2 n}{4}. The problem shows analogy with the Unbalancing Lights Problem of Gale and Berlekamp

    Similar works

    Full text

    thumbnail-image

    Available Versions