Ultra-high temperature Soret effect in a silicate melt: SiO2 migration to cold side

Abstract

The Soret effect, temperature gradient driven diffusion, in silicate melts has been investigated intensively in the earth sciences from the 1980s. The SiO2 component is generally concentrated in the hotter region of silicate melts under a temperature gradient. Here, we report that at ultra-high temperatures above approximately 3000 K, SiO2 becomes concentrated in the colder region of the silicate melts under a temperature gradient. The interior of an aluminosilicate glass (63.3SiO2-16.3Al2O3-20.4CaO(mol%)) was irradiated with a 250 kHz femtosecond laser pulse for local heating. SiO2 migrated to the colder region during irradiation with an 800 pulse (3.2 ms irradiation). The temperature analysis indicated that migration to the colder region occurred above 3060 K. In the non-equilibrium molecular dynamics (NEMD) simulation, SiO2 migrated to the colder region under a temperature gradient, which had an average temperature of 4000 K; this result supports the experimental result. SiO2 exhibited a tendency to migrate to the colder region at 2400 K in both the NEMD and experimental study. The second-order like phase transition was observed at ~ 2000-3400 K when calculated using MD without a temperature gradient. Therefore, the second-order phase transition could be related to the migration of SiO2 to colder region. However, the detailed mechanism has not been elucidated

    Similar works

    Full text

    thumbnail-image

    Available Versions