First-order Phase Transition interpretation of PTA signal produces solar-mass Black Holes

Abstract

We perform a Bayesian analysis of NANOGrav 15yr and IPTA DR2 pulsar timing residuals and show that the recently detected stochastic gravitational-wave background (SGWB) is compatible with a SGWB produced by bubble dynamics during a cosmological first-order phase transition. The timing data suggests that the phase transition would occur around QCD confinement temperature and would have a slow rate of completion. This scenario can naturally lead to the abundant production of primordial black holes (PBHs) with solar masses. These PBHs can potentially be detected by current and advanced gravitational wave detectors LIGO-Virgo-Kagra, Einstein Telescope, Cosmic Explorer, by astrometry with GAIA and by 21-cm survey.Comment: 5 pages, 4 figures + appendice

    Similar works

    Full text

    thumbnail-image

    Available Versions