Adaptive Graph Contrastive Learning for Recommendation

Abstract

Graph neural networks (GNNs) have recently emerged as an effective collaborative filtering (CF) approaches for recommender systems. The key idea of GNN-based recommender systems is to recursively perform message passing along user-item interaction edges to refine encoded embeddings, relying on sufficient and high-quality training data. However, user behavior data in practical recommendation scenarios is often noisy and exhibits skewed distribution. To address these issues, some recommendation approaches, such as SGL, leverage self-supervised learning to improve user representations. These approaches conduct self-supervised learning through creating contrastive views, but they depend on the tedious trial-and-error selection of augmentation methods. In this paper, we propose a novel Adaptive Graph Contrastive Learning (AdaGCL) framework that conducts data augmentation with two adaptive contrastive view generators to better empower the CF paradigm. Specifically, we use two trainable view generators - a graph generative model and a graph denoising model - to create adaptive contrastive views. With two adaptive contrastive views, AdaGCL introduces additional high-quality training signals into the CF paradigm, helping to alleviate data sparsity and noise issues. Extensive experiments on three real-world datasets demonstrate the superiority of our model over various state-of-the-art recommendation methods. Our model implementation codes are available at the link https://github.com/HKUDS/AdaGCL

    Similar works

    Full text

    thumbnail-image

    Available Versions