ISAC-Enabled Beam Alignment for Terahertz Networks: Scheme Design and Coverage Analysis

Abstract

As a key pillar technology for the future 6G networks, terahertz (THz) communication can provide high-capacity transmissions, but suffers from severe propagation loss and line-of-sight (LoS) blockage that limits the network coverage. Narrow beams are required to compensate for the loss, but they in turn bring in beam misalignment challenge that degrades the THz network performance. The high sensing accuracy of THz signals enables integrated sensing and communication (ISAC) technology to assist the LoS blockage and user mobility-induced beam misalignment, enhancing THz network coverage. In line with the 5G beam management, we propose a joint synchronization signal block (SSB) and reference signal (RS)-based sensing (JSRS) scheme to predict the need for beam switches, and thus prevent beam misalignment. We further design an optimal sensing signal pattern that minimizes beam misalignment with fixed sensing resources, which reveals design insights into the time-to-frequency allocation. We derive expressions for the coverage probability and spatial throughput, which provide instructions on the ISAC-THz network deployment and further enable evaluations for the sensing benefit in THz networks. Numerical results show that the JSRS scheme is effective and highly compatible with the 5G air interface. Averaged in tested urban use cases, JSRS achieves near-ideal performance and reduces around 80% of beam misalignment, and enhances the coverage probability by about 75%, compared to the network with 5G-required positioning ability

    Similar works

    Full text

    thumbnail-image

    Available Versions