Turing patterns in a 3D morpho-chemical bulk-surface reaction-diffusion system for battery modeling

Abstract

In this paper we introduce a bulk-surface reaction-diffusion (BSRD) model in three space dimensions that extends the DIB morphochemical model to account for the electrolyte contribution in the application, in order to study structure formation during discharge-charge processes in batteries. Here we propose to approximate the model by the Bulk-Surface Virtual Element Method on a tailor-made mesh that proves to be competitive with fast bespoke methods for PDEs on Cartesian grids. We present a selection of numerical simulations that accurately match the classical morphologies found in experiments. Finally, we compare the Turing patterns obtained by the coupled 3D BS-DIB model with those obtained with the original 2D version.Comment: 25 pages, 11 figures, 1 tabl

    Similar works

    Full text

    thumbnail-image

    Available Versions