Recently, Neural Topic Models (NTM), inspired by variational autoencoders,
have attracted a lot of research interest; however, these methods have limited
applications in the real world due to the challenge of incorporating human
knowledge. This work presents a semi-supervised neural topic modeling method,
vONTSS, which uses von Mises-Fisher (vMF) based variational autoencoders and
optimal transport. When a few keywords per topic are provided, vONTSS in the
semi-supervised setting generates potential topics and optimizes topic-keyword
quality and topic classification. Experiments show that vONTSS outperforms
existing semi-supervised topic modeling methods in classification accuracy and
diversity. vONTSS also supports unsupervised topic modeling. Quantitative and
qualitative experiments show that vONTSS in the unsupervised setting
outperforms recent NTMs on multiple aspects: vONTSS discovers highly clustered
and coherent topics on benchmark datasets. It is also much faster than the
state-of-the-art weakly supervised text classification method while achieving
similar classification performance. We further prove the equivalence of optimal
transport loss and cross-entropy loss at the global minimum.Comment: 24 pages, 12 figures, ACL findings 202