Legged robots can pass through complex field environments by selecting gaits
and discrete footholds carefully. Traditional methods plan gait and foothold
separately and treat them as the single-step optimal process. However, such
processing causes its poor passability in a sparse foothold environment. This
paper novelly proposes a coordinative planning method for hexapod robots that
regards the planning of gait and foothold as a sequence optimization problem
with the consideration of dealing with the harshness of the environment as leg
fault. The Monte Carlo tree search algorithm(MCTS) is used to optimize the
entire sequence. Two methods, FastMCTS, and SlidingMCTS are proposed to solve
some defeats of the standard MCTS applicating in the field of legged robot
planning. The proposed planning algorithm combines the fault-tolerant gait
method to improve the passability of the algorithm. Finally, compared with
other planning methods, experiments on terrains with different densities of
footholds and artificially-designed challenging terrain are carried out to
verify our methods. All results show that the proposed method dramatically
improves the hexapod robot's ability to pass through sparse footholds
environment