Generalized-Equiangular Geometry CT: Concept and Shift-Invariant FBP Algorithms

Abstract

With advanced X-ray source and detector technologies being continuously developed, non-traditional CT geometries have been widely explored. Generalized-Equiangular Geometry CT (GEGCT) architecture, in which an X-ray source might be positioned radially far away from the focus of arced detector array that is equiangularly spaced, is of importance in many novel CT systems and designs. GEGCT, unfortunately, has no theoretically exact and shift-invariant analytical image reconstruction algorithm in general. In this study, to obtain fast and accurate reconstruction from GEGCT and to promote its system design and optimization, an in-depth investigation on a group of approximate Filtered BackProjection (FBP) algorithms with a variety of weighting strategies has been conducted. The architecture of GEGCT is first presented and characterized by using a normalized-radial-offset distance (NROD). Next, shift-invariant weighted FBP-type algorithms are derived in a unified framework, with pre-filtering, filtering, and post-filtering weights. Three viable weighting strategies are then presented including a classic one developed by Besson in the literature and two new ones generated from a curvature fitting and from an empirical formula, where all of the three weights can be expressed as certain functions of NROD. After that, an analysis of reconstruction accuracy is conducted with a wide range of NROD. We further stretch the weighted FBP-type algorithms to GEGCT with dynamic NROD. Finally, the weighted FBP algorithm for GEGCT is extended to a three-dimensional form in the case of cone-beam scan with a cylindrical detector array.Comment: 31 pages, 13 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions