Rapid FRD determination for multiplexed fibre systems -- I. The quasi-near field model and its uncertainties

Abstract

Focal Ratio Degradation (FRD) in fibres is a crucial factor to control in astronomical instruments in order to minimize light loss. As astronomical instrumentation has advanced, the integration of large populations of fibres has become common. However, determining FRD in multiplexed fibre systems has become a challenging and time-consuming task. The Integral Field Unit for the Fiber Arrayed Solar Optical Telescope (FASOT-IFU) represents the most densely arranged fibre-based IFU in a single unit. Due to the close packing of fibres in the V-groove of the slit end, measuring FRD is particularly challenging as the output spots are prone to overlapping with adjacent fibres. In this paper, a novel method based on the quasi-near field model is proposed to enable rapid FRD measurement in highly multiplexed fibre systems like IFUs and multi-object observation systems. The principle and uncertainties associated with the method are investigated. The method's validity is demonstrated by applying it to determine the FRD in FASOT-IFU, with the achieved FRD performance meeting the acceptable requirements of FASOT-IFU, where the output focal ratio primarily falls within the range of 5.0-7.0. The results indicate that the proposed method offers several advantages, including the simultaneous and rapid measurement of FRD in multiple fibres with high accuracy (error smaller than 0.35 in F-ratio). Furthermore, besides FRD, the method exhibits potential for extensive measurements of throughput, scrambling, and spectral analysis.Comment: 10 pages, 12 figures, submitted to MNRA

    Similar works

    Full text

    thumbnail-image

    Available Versions