Purcell enhancement of single-photon emitters in silicon

Abstract

Individual spins that are coupled to telecommunication photons offer unique promise for distributed quantum information processing once a coherent and efficient spin-photon interface can be fabricated at scale. We implement such an interface by integrating erbium dopants into a nanophotonic silicon resonator. We achieve spin-resolved excitation of individual emitters with < 0.1 GHz spectral diffusion linewidth. Upon resonant driving, we observe optical Rabi oscillations and single-photon emission with a 78-fold Purcell enhancement. Our results establish a promising new platform for quantum networks

    Similar works

    Full text

    thumbnail-image

    Available Versions