Waveform systematics in identifying gravitationally lensed gravitational waves: Posterior overlap method

Abstract

Gravitational lensing has been extensively observed for electromagnetic signals, but not yet for gravitational waves (GWs). Detecting lensed GWs will have many astrophysical and cosmological applications, and becomes more feasible as the sensitivity of the LIGO-Virgo-KAGRA detectors improves. One of the missing ingredients to robustly identify lensed GWs is to ensure that the statistical tests used are robust under the choice of underlying waveform models. We present the first systematic study of possible waveform systematics in identifying candidates for strongly lensed GW event pairs, focusing on the posterior overlap method. To this end, we compare Bayes factors from all posteriors using different waveforms included in GWTC data releases from the first three observing runs (O1-O3). We find that waveform choice yields a wide spread of Bayes factors in some cases. However, it is likely that no event pairs from O1 to O3 were missed due to waveform choice. We also perform parameter estimation with additional waveforms for interesting cases, to understand the observed differences. We also briefly explore if computing the overlap from different runs for the same event can be a useful metric for waveform systematics or sampler issues, independent of the lensing scenario.Comment: 29 pages, 5 figures, comments welcom

    Similar works

    Full text

    thumbnail-image

    Available Versions