Effectiveness of Oil-based Nanoemulsions with Molecular Docking of its Antimicrobial Potential

Abstract

The biological properties of plant oils are improved by their conversion to nanoemulsions (NEs). This study evaluated the antimicrobial, antioxidant, and anti-hemolytic efficacy of coconut and salad rocket oils and their NEs. The result of the gas chromatography-mass spectroscopy analysis of the oils showed varied constituents such as palmitic acid, trimethylsilyl ester; 2,3-bis(acetyloxy)propyl laurate in salad rocket oil, 2-lauro-1,3-didecoin, n-butyl laurate; laurin, tri-; laurin in coconut oil. NEs diameter of salad rocket and coconut oils was 24.6 and 29.2 nm, respectively. More inhibitory activity of NEs compared with non-NEs form against Bacillus cereus, Staphylococcus aureus, Escherichia coli, Salmonella typhi, Candida albicans, and Aspergillus flavus was detected. Coconut oil and its NEs caused 14.3% (anti-hemolysis 85.7%) and 22% hemolysis (anti-hemolysis 78%), respectively. Salad rocket oil and its NEs caused hemolysis 3.4% and 20.9%, respectively at 1000 µg/mL. Antioxidant activity of salad rocket and coconut oil reflected more IC50 (39.3 and 109.4 µg/mL) than its NEs (35.8 and 80.5 µg/mL), respectively. Molecular docking of trimethylsilyl ester and 2-lauro-1,3-didecoin against S. aureus (PDB=7BGE) and C. albicans protein (PDB=3DRA) revealed optimal binding mode that had the most energy interaction with the binding sites

    Similar works