Spatially resolved dielectric loss at the Si/SiO2_2 interface

Abstract

The Si/SiO2_2 interface is populated by isolated trap states which modify its electronic properties. These traps are of critical interest for the development of semiconductor-based quantum sensors and computers, as well as nanoelectronic devices. Here, we study the electric susceptibility of the Si/SiO2_2 interface with nm spatial resolution using frequency-modulated atomic force microscopy to measure a patterned dopant delta-layer buried 2 nm beneath the silicon native oxide interface. We show that surface charge organization timescales, which range from 1-150 ns, increase significantly around interfacial states. We conclude that dielectric loss under time-varying gate biases at MHz and sub-MHz frequencies in metal-insulator-semiconductor capacitor device architectures is highly spatially heterogeneous over nm length scales

    Similar works

    Full text

    thumbnail-image

    Available Versions