Flame synthesis is a simple method to prepare sub-stoichiometric titanium dioxide (TiO_2-x) nanoparticles. A rotating stagnation plate is often used as a substrate and to provide a cooling mechanism. The collection of particles from the rotating plate could be done in two ways: the conventional interval particle collection (IPC) method and a continuous particle collection (CPC). The effects of the deposition time and the rotation speed on the properties of titanium dioxide (TiO_2) particles are investigated experimentally. For IPC, it was found that the properties of the collected samples are
dependent on the deposition time. This creates an undesirable correlation between properties and synthesis yield. On the other hand, CPC approach allows for a continuous synthesis in which the particle properties are invariant with respect to the synthesis yield. The tunability of the particle properties is still achievable by controlling the rotation speed in the CPC.This project is supported by the National Research Foundation (NRF), Prime Minister’s Office, Singapore under its Campus for Research Excellence and Technological 325 Enterprise (CREATE) programme