Optimal (degree+1)-coloring in congested clique

Abstract

We consider the distributed complexity of the (degree+1)-list coloring problem, in which each node u of degree d(u) is assigned a palette of d(u) + 1 colors, and the goal is to find a proper coloring using these color palettes. The (degree+1)-list coloring problem is a natural generalization of the classical (Δ + 1)-coloring and (Δ + 1)-list coloring problems, both being benchmark problems extensively studied in distributed and parallel computing. In this paper we settle the complexity of the (degree+1)-list coloring problem in the Congested Clique model by showing that it can be solved deterministically in a constant number of rounds

    Similar works