research

Cutaneous Biology: In vivo blockade of pemphigus vulgaris acantholysis by inhibition of intracellular signal transduction cascades

Abstract

Pemphigus vulgaris (PV) is an autoimmune disease characterized by mucocutaneous intraepithelial blisters and pathogenic autoantibodies against desmoglein 3. The mechanism of blister formation in pemphigus has not been defined; however, in vitro data suggest a role for activation of intracellular signalling cascades. OBJECTIVES: To investigate the contribution of these signalling pathways to the mechanism of PV IgG-induced acantholysis in vivo. METHODS: We used the passive transfer mouse model. Mice were injected with IgG fractions of sera from a patient with PV, with or without pretreatment with inhibitors of proteins that mediate intracellular signalling cascades. RESULTS: Inhibitors of tyrosine kinases, phospholipase C, calmodulin and the serine/threonine kinase protein kinase C prevented PV IgG-induced acantholysis in vivo. CONCLUSIONS: These observations strongly support the role of intracellular signalling cascades in the molecular mechanism of PV IgG-induced acantholysi

    Similar works