Hybrid materials for meniscus replacement in the knee

Abstract

The meniscus is cartilage that not only prevents the bones in knee joints to grind together but acts as a joint stabiliser. Many athletes and older people suffer from meniscus tears and degeneration. Meniscal tear treatments have been through meniscal suture or by partial meniscectomy (removal). These treatments may cause changes in loading or decreased contact area and increased contact stress. Consequently, the ultimate result is a total meniscectomy that potentially leads to osteoarthritis (OA). These current surgical strategies have lower success rates in younger patients. There are no successful artificial meniscus replacement devices for young patients, therefore, new materials for meniscus replacement are required. Here, the aim was to develop a novel biomimetic meniscus device made of a silica/polytetrahydrofuran (SiO2/polyTHF) inorganic/organic hybrid material. The device is biomimetic in terms of its structural design, mechanical properties, and integration with the host tissue. The device should delay onset of OA. The hybrid has unique properties in that is a bouncy material which has comparable mechanical properties to knee cartilage. Two pot hybrid synthesis was used to synthesise the SiO2/polyTHF hybrid and casting mould was developed based on the shrinkage factor of the hybrid. The hybrid synthesis modifications were conducted by controlling compositions and drying processes. Biological fixation of the hybrid meniscus was achieved by titanium anchors with gyroid porous architecture which can provide initial mechanical fixation and secondary biological fixation on the tibia. The architecture was designed using Solidworks and Rhinoceros software and printed by the Additive Manufacturing technique of selective laser melting (SLM). Mechanical testing of the device included compression, cyclic loading, shear strength and long-term 90 days in-vitro mechanical testing, tribology against living bovine 2 cartilage, and cell studies. The results suggest that combination of hybrid and Ti gyroid has potential to be meniscus implant due to comparable mechanical properties, low friction coefficient, and non-cytotoxicity.Open Acces

    Similar works