CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
unknown
A general nonlinear least squares data reconciliation and estimation method for material flow analysis
Authors
JM Allwood
JM Cullen
GM Kopec
D Ralph
Publication date
1 January 2016
Publisher
Journal of Industrial Ecology
Abstract
© 2015 The Authors. Journal of Industrial Ecology, published by Wiley Periodicals, Inc., on behalf of Yale University. The extraction, transformation, use, and disposal of materials can be represented by directed, weighted networks, known in the material flow analysis (MFA) community as Sankey or flow diagrams. However, the construction of such networks is dependent on data that are often scarce, conflicting, or do not directly map onto a Sankey diagram. By formalizing the forms of data entry, a nonlinear constrained optimization program for data estimation and reconciliation can be formulated for reconciling data sets for MFA problems where data are scarce, in conflict, do not directly map onto a Sankey diagram, and are of variable quality. This method is demonstrated by reanalyzing an existing MFA of global steel flows, and the resulting analytical solution measurably improves upon their manual solution.The authors gratefully acknowledge the financial support of BP as part of its Energy Sustainability Challenge for this research
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Sustaining member
Apollo (Cambridge)
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:www.repository.cam.ac.uk:1...
Last time updated on 20/02/2017