The ability to leverage heterogeneous robotic experience from different
robots and tasks to quickly master novel skills and embodiments has the
potential to transform robot learning. Inspired by recent advances in
foundation models for vision and language, we propose a foundation agent for
robotic manipulation. This agent, named RoboCat, is a visual goal-conditioned
decision transformer capable of consuming multi-embodiment action-labelled
visual experience. This data spans a large repertoire of motor control skills
from simulated and real robotic arms with varying sets of observations and
actions. With RoboCat, we demonstrate the ability to generalise to new tasks
and robots, both zero-shot as well as through adaptation using only 100--1000
examples for the target task. We also show how a trained model itself can be
used to generate data for subsequent training iterations, thus providing a
basic building block for an autonomous improvement loop. We investigate the
agent's capabilities, with large-scale evaluations both in simulation and on
three different real robot embodiments. We find that as we grow and diversify
its training data, RoboCat not only shows signs of cross-task transfer, but
also becomes more efficient at adapting to new tasks