The increasingly crowded spectrum has spurred the design of joint
radar-communications systems that share hardware resources and efficiently use
the radio frequency spectrum. We study a general spectral coexistence scenario,
wherein the channels and transmit signals of both radar and communications
systems are unknown at the receiver. In this dual-blind deconvolution (DBD)
problem, a common receiver admits a multi-carrier wireless communications
signal that is overlaid with the radar signal reflected off multiple targets.
The communications and radar channels are represented by continuous-valued
range-time and Doppler velocities of multiple transmission paths and multiple
targets. We exploit the sparsity of both channels to solve the highly ill-posed
DBD problem by casting it into a sum of multivariate atomic norms (SoMAN)
minimization. We devise a semidefinite program to estimate the unknown target
and communications parameters using the theories of positive-hyperoctant
trigonometric polynomials (PhTP). Our theoretical analyses show that the
minimum number of samples required for near-perfect recovery is dependent on
the logarithm of the maximum of number of radar targets and communications
paths rather than their sum. We show that our SoMAN method and PhTP
formulations are also applicable to more general scenarios such as
unsynchronized transmission, the presence of noise, and multiple emitters.
Numerical experiments demonstrate great performance enhancements during
parameter recovery under different scenarios.Comment: 26 pages, 13 figures, 1 tabl