Particle-conserving dynamics on the single-particle level

Abstract

We generalize the particle-conserving dynamics method of de las Heras et al. [J. Phys.: Condens. Matter 28, 244024 (2016)] to binary mixtures and apply this to hard rods in one dimension. Considering the case of one species consisting of only one particle enables us to address the tagged-particle dynamics. The time-evolution of the species-labeled density profiles is compared to exact Brownian dynamics and (grand- canonical) dynamical density functional theory. The particle-conserving dynamics yields improved results over the dynamical density functional theory and well reproduces the simulation data at short and intermediate times. However, the neglect of a strict particle order (due to the fundamental statistical assumption of ergodicity) leads to errors at long times for our one-dimensional setup. The isolated study of that error makes clear the fundamental limitations of (adiabatic) density-based theoretical approaches when applied to systems of any dimension for which particle caging is a dominant physical mechanism

    Similar works