research

Predicting decay and ground vegetation development in Picea abies snag stands

Abstract

In a Picea abies (L.) Karst. (Norway spruce) mountain forest on the Gandberg site in the northern Swiss Alps, trees were killed by bark beetles in 1992-1997. A combination of field studies and dynamic modelling was used to project snag decay and future ground vegetation succession in these steep, unharvested stands. In permanent plots, ground vegetation cover and natural tree regeneration have been monitored annually since 1994. To obtain additional information on the abundance of snags, logs, boulders and other microsite types in these stands, the relative frequency of the microsite types was quantified along four strip transects on the montane and subalpine elevational levels. A dynamic model of snag decay and ground vegetation development was constructed (modified matrix model approach). Based on field data and literature values, the model was parameterised and initialised separately for the montane and the subalpine level. For model validation, microsite types were quantified in 2001 with the line-intercept method on both elevational levels. Starting from the conditions in the stands before the bark beetle attacks, it was possible to project short-term succession and to accurately simulate the decay and ground vegetation patterns eight years after tree die-back. Long-term simulations suggest that on the montane level, raspberries (Rubus idaeus L.) will be replaced by Picea abies, while on the subalpine level ferns will dominate for a long tim

    Similar works