research

Wavelet solution of variable order pseudodifferential equations

Abstract

Sobolev spaces H m(x)(I) of variable order 0<m(x)<1 on an interval I⊂ℝ arise as domains of Dirichlet forms for certain quadratic, pure jump Feller processes X t∈ℝ with unbounded, state-dependent intensity of small jumps. For spline wavelets with complementary boundary conditions, we establish multilevel norm equivalences in H m(x)(I) and prove preconditioning and wavelet matrix compression results for the variable order pseudodifferential generators A of X. Sufficient conditions on A to satisfy a Gårding inequality in H m(x)(I) and time-analyticity of the semigroup T t associated with the Feller process X t are established. As application, wavelet-based algorithms of log-linear complexity are obtained for the valuation of contingent claims on pure jump Feller-Lévy processes X t with state-dependent jump intensity by numerical solution of the corresponding Kolmogoroff equation

    Similar works