We present a new point of view on the quantization of the massive gravitational field, namely we use exclusively the quantum framework of the second quantization. The Hilbert space of the many-gravitons system is a Fock space F+ (Hgraviton) where the one-particle Hilbert space Hgraviton carries the direct sum of two unitary irreducible representations of the Poincaré group corresponding to two particles of mass m > 0 and spins 2 and 0, respectively. This Hilbert space is canonically isomorphic to a space of the type Ker(Q)/Im(Q) where Q is a gauge charge defined in an extension of the Hilbert space Hgraviton generated by the gravitational field hμν and some ghosts fields uμ, ũμ (which are vector Fermi fields) and vμ (which is a vector Bose field). Then we study the self interaction of massive gravity in the causal framework. We obtain a solution which goes smoothly to the zero-mass solution of linear quantum gravity up to a term depending on the bosonic ghost field. This solution depends on two real constants as it should be; these constants are related to the gravitational constant and the cosmological constant. In the second order of the perturbation theory we do not need a Higgs field, in sharp contrast to Yang-Mills theor