Improved Bounds for Sampling Solutions of Random CNF Formulas

Abstract

Let Φ\Phi be a random kk-CNF formula on nn variables and mm clauses, where each clause is a disjunction of kk literals chosen independently and uniformly. Our goal is to sample an approximately uniform solution of Φ\Phi (or equivalently, approximate the partition function of Φ\Phi). Let α=m/n\alpha=m/n be the density. The previous best algorithm runs in time npoly(k,α)n^{\mathsf{poly}(k,\alpha)} for any α≲2k/300\alpha\lesssim2^{k/300} [Galanis, Goldberg, Guo, and Yang, SIAM J. Comput.'21]. Our result significantly improves both bounds by providing an almost-linear time sampler for any α≲2k/3\alpha\lesssim2^{k/3}. The density α\alpha captures the \emph{average degree} in the random formula. In the worst-case model with bounded \emph{maximum degree}, current best efficient sampler works up to degree bound 2k/52^{k/5} [He, Wang, and Yin, FOCS'22 and SODA'23], which is, for the first time, superseded by its average-case counterpart due to our 2k/32^{k/3} bound. Our result is the first progress towards establishing the intuition that the solvability of the average-case model (random kk-CNF formula with bounded average degree) is better than the worst-case model (standard kk-CNF formula with bounded maximal degree) in terms of sampling solutions.Comment: 51 pages, all proofs added, and bounds slightly improve

    Similar works

    Full text

    thumbnail-image

    Available Versions