research

Micromechanical properties of common yew ( Taxus baccata ) and Norway spruce ( Picea abies ) transition wood fibers subjected to longitudinal tension

Abstract

The longitudinal modulus of elasticity of common yew is astonishingly low in light of its high raw density. At least this was found for specimens examined at the solid wood level and at the tissue level. However, to reveal if this low axial stiffness is also present at the cellular level, tensile tests were performed on individual yew fibers and on spruce fibers for reference. The results revealed a low stiffness and a high strain to fracture for yew when compared with spruce. This compliant behavior was ascribed to a relatively high microfibril angle of yew measured by X-ray scattering. It can be concluded that the high compliance of yew observed at higher hierarchical levels is obviously controlled by a structural feature present at the cell wall level. In future studies, the biomechanical function of this compliant behavior for the living yew tree would be of particular interes

    Similar works