Temperature-dependent elastic properties of DNA

Abstract

Knowledge of the elastic properties, e.g., the persistence length or interphosphate distance, of single-stranded (ss) and double-stranded (ds) DNA under different experimental conditions is critical to characterizing molecular reactions studied with single-molecule techniques. While previous experiments have addressed the dependence of the elastic parameters upon varying ionic strength and contour length, temperature-dependent effects are less studied. Here, we examine the temperature-dependent elasticity of ssDNA and dsDNA in the range 5°C-50°C using a temperature-jump optical trap. We find a temperature softening for dsDNA and a temperature stiffening for ssDNA. Our results highlight the need for a general theory explaining the phenomenology observed

    Similar works