A probabilistic fog forecast system was designed based on two high resolution numerical 1-D models called COBEL and PAFOG. The 1-D models are coupled to several 3-D numerical weather prediction models and thus are able to consider the effects of advection. To deal with the large uncertainty inherent to fog forecasts, a whole ensemble of 1-D runs is computed using the two different numerical models and a set of different initial conditions in combination with distinct boundary conditions. Initial conditions are obtained from variational data assimilation, which optimally combines observations with a first guess taken from operational 3-D models. The design of the ensemble scheme computes members that should fairly well represent the uncertainty of the current meteorological regime. Verification for an entire fog season reveals the importance of advection in complex terrain. The skill of 1-D fog forecasts is significantly improved if advection is considered. Thus the probabilistic forecast system has the potential to support the forecaster and therefore to provide more accurate fog forecast