There is some evidence that human subjects preferentially select small numbers when asked to sample numbers from large intervals "at random”. A retrospective analysis of single digit frequencies in 16 independent experiments with the Mental Dice Task (generation of digits 1-6 during 1min) confirmed the occurrence of small-number biases (SNBs) in 488 healthy subjects. A subset of these experiments suggested a spatial nature of this bias in the sense of a "leftward” shift along the number line. First, individual SNBs were correlated with leftward deviations in a number line bisection task (but unrelated to the bisection of physical lines). Second, in 20 men, the magnitude of SNBs significantly correlated with leftward attentional biases in the judgment of chimeric faces. Finally, cognitive activation of the right hemisphere enhanced SNBs in 20 different men, while left hemisphere activation reduced them. Together, these findings provide support for a spatial component in random number generation. Specifically, they allow an interpretation of SNBs in terms of "pseudoneglect in number space.” We recommend the use of random digit generation for future explorations of spatial-attentional asymmetries in numerical processing and discuss methodological issues relevant to prospective design