Purpose: Radiolabelled somatostatin-based antagonists show a higher uptake in tumour-bearing mouse models than agonists of similar or even distinctly higher receptor affinity. Very similar results were obtained with another family of G protein-coupled receptor ligands, the bombesin family. We describe a new conjugate, RM2, with the chelator DOTA coupled to D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2 via the cationic spacer 4-amino-1-carboxymethyl-piperidine for labelling with radiometals such as 111In and 68Ga. Methods: RM2 was synthesized on a solid support and evaluated in vitro in PC-3 cells. IC50 and Kd values were determined. The antagonist potency was evaluated by immunofluorescence-based internalization and Ca2+ mobilization assays. Biodistribution studies were performed in PC-3 and LNCaP tumour-bearing mice with 111In-RM2 and 68Ga-RM2, respectively. PET/CT studies were performed on PC-3 and LNCaP tumour-bearing nude mice with 68Ga-RM2. Results: RM2 and 111In-RM2 are high-affinity and selective ligands for the GRP receptor (7.7±3.3nmol/l for RM2; 9.3±3.3nmol/l for natIn-RM2). The potent antagonistic properties were confirmed by an immunofluorescence-based internalization and Ca2+ mobilization assays. 68Ga- and 111In-RM2 showed high and specific uptake in both the tumour and the pancreas. Uptake in the tumour remained high (15.2±4.8%IA/g at 1h; 11.7±2.4%IA/g at 4h), whereas a relatively fast washout from the pancreas and the other abdominal organs was observed. Uptake in the pancreas decreased rapidly from 22.6±4.7%IA/g at 1h to 1.5±0.5%IA/g at 4h. Conclusion: RM2 was shown to be a potent GRPr antagonist. Pharmacokinetics and imaging studies indicate that 111In-RM2 and 68Ga-RM2 are ideal candidates for clinical SPECT and PET studie