research

Isotopic Composition of the Solar Wind Inferred from In-Situ Spacecraft Measurements

Abstract

The Sun is the largest reservoir of matter in the solar system, which formed 4.6Gyr ago from the protosolar nebula. Data from space missions and theoretical models indicate that the solar wind carries a nearly unfractionated sample of heavy isotopes at energies of about 1keV/amu from the Sun into interplanetary space. In anticipation of results from the Genesis mission's solar-wind implanted samples, we revisit solar wind isotopic abundance data from the high-resolution CELIAS/MTOF spectrometer on board SOHO. In particular, we evaluate the isotopic abundance ratios 15N/14N, 17O/16O, and 18O/16O in the solar wind, which are reference values for isotopic fractionation processes during the formation of terrestrial planets as well as for the Galactic chemical evolution. We also give isotopic abundance ratios for He, Ne, Ar, Mg, Si, Ca, and Fe measured in situ in the solar win

    Similar works