research

Development of a high temperature treatment device for spent nuclear fuel

Abstract

Novel reprocessing schemes and techniques are the focus of the Euratom FP7 project "Actinide Recycling for Separation and Transmutation” (ACSEPT), where the Paul Scherrer Institute (PSI) is represented in the pyrochemical domain. The subject of investigation is the selective separation of fission products (FPs) from spent nuclear fuel as a head-end step to either classical hydro based or pyro processes which are not yet applied on a large scale. The selective removal of FPs that are major contributors to the overall radiation dose or bear great potentials in terms of radiotoxicity (i.e. cesium or iodine), is advantageous for further processes. At PSI a device was developed to release volatile FPs by means of inductive heating. The heating up to 2,300°C promotes the release of material that is further transported by a carrier gas stream into an inductively coupled plasma mass spectrometer for online detection. The carrier gas can be either inert (Ar) or can contain reducing or oxidizing components like hydrogen or oxygen, respectively. The development of the device by computer aided engineering approaches, the commissioning and evaluation of the device and data from first release experiments on a simulated fuel matrix are discusse

    Similar works