Large effective magnetic fields from chiral phonons in rare-earth halides

Abstract

Time-reversal symmetry (TRS) is pivotal for materials optical, magnetic, topological, and transport properties. Chiral phonons, characterized by atoms rotating unidirectionally around their equilibrium positions, generate dynamic lattice structures that break TRS. Here we report that coherent chiral phonons, driven by circularly polarized terahertz light pulses, can polarize the paramagnetic spins in CeF3 like a quasi-static magnetic field on the order of 1 Tesla. Through time-resolved Faraday rotation and Kerr ellipticity, we found the transient magnetization is only excited by pulses resonant with phonons, proportional to the angular momentum of the phonons, and growing with magnetic susceptibility at cryogenic temperatures, as expected from the spin-phonon coupling model. The time-dependent effective magnetic field quantitatively agrees with that calculated from phonon dynamics. Our results may open a new route to directly investigate mode-specific spin-phonon interaction in ultrafast magnetism, energy-efficient spintronics, and non-equilibrium phases of matter with broken TRS

    Similar works

    Full text

    thumbnail-image

    Available Versions