This paper presents ATEM, a novel framework for studying topic evolution in
scientific archives. ATEM is based on dynamic topic modeling and dynamic graph
embedding techniques that explore the dynamics of content and citations of
documents within a scientific corpus. ATEM explores a new notion of contextual
emergence for the discovery of emerging interdisciplinary research topics based
on the dynamics of citation links in topic clusters. Our experiments show that
ATEM can efficiently detect emerging cross-disciplinary topics within the DBLP
archive of over five million computer science articles